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Pattern formation in screened electrostatic fields: Growth in a channel
and in two dimensions
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It is shown that screening greatly diversifies the type of patterns that can grow in an electro-
static field. Screening introduces a new length scale and a nontrivial dependence on the boundary
conditions. Growing patterns can either have a fractal character (diffusion-limited-aggregation-like)
at scales shorter than the screening length, be similar to the Eden model, or even be dense. A
transition from dense to multibranched growth occurs at a point which depends on the potentials
at the boundaries, the distance between them, and the screening length. Simulations are carried
out in one dimension (growth in a channel) and in two dimensions (with different shapes for the
outer electrode). The transition from dense to filamentary growth is also investigated by means of
an analytical study of the instability, within a similar scheme to the one proposed by Mullins and
Sekerka. The results are qualitatively similar for growth in one and two dimensions. Finally, it is
shown that, before the transition (dense growth), the aggregate reproduces the shape of the outer

electrode.

PACS numbers: 68.70.+w, 05.40.+j, 61.50.Cj

I. INTRODUCTION

The diffusion-limited-aggregation (DLA) [1, 2] and the
dielectric breakdown (DB) [3] models have been very suc-
cessful in illustrating the possibility of fractal growth [4]
in Laplacian fields. Nature does offer, however, greater
variety, in which both fractal and nonfractal patterns
may grow. The dependence on the boundary condi-
tions in the DB discussed in Ref. [5] illustrates this
point: a change in the shape of electrodes induces dras-
tic changes in the growing patterns which evolve into
a rather dense multibranched structure with fractal di-
mension D ~ 2. Although several reasons have been
suggested [5] to explain this dependence on the bound-
ary conditions, among which we mention the existence of
a threshold field and the internal resistance of the break-
down pattern (plasma channels in the case of a discharge
in a gas), in very few instances have their effects been
analyzed in any depth. Only the possibility of a different
growth law, in which the growth rate is assumed to be
proportional to a power 7 of the local field, different in
general from unity, has been examined in detail in the
DB context [3], utilized an equivalent approach in DLA
(6], and used to explain patterns that are more diluted
than DLA that may occur in Nature. Note, however,
that there are microscopic reasons for expecting n = 1 in
DB [7]. More recently, the possibility of a crossover from
a DLA pattern to a more diluted one has also been in-
vestigated by using more complicated growth laws, both
in the DB [8] and in the somewhat similar phenomena of
mechanical breakdown [9-11]. The variety of structures
further increases for the growth of metallic aggregates
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through electrochemical deposition (ECD). These may
have a fractal character as in DLA, be dendritic crys-
tals, or give rise to dense radial structures [12-18]. The
stability of the latter has been ascribed to the finite re-
sistivity of the aggregate [12], or to the anion migration
between the electrodes [13,16]. Also, a transition from a
dense pattern to a more diluted branched structure has
been observed [13, 19, 20] and referred to as the Hecker
transition [20].

In this paper we investigate the effects of screening [21]
on structures growing in electrostatic fields. The origin of
screening might lie on the presence of free charges in the
cases of ECD and DB. From elementary considerations
of thermal equilibrium, the Debye-Hiickel theory deduces
the existence of a screening length which depends on the
total density of charges and the temperature [22]. The
same situation may arise in DLA; in this case screening
might be due to the presence of sinks (screening) or an
ambient density of particles (antiscreening), see for in-
stance Ref. [23]. We have carried out numerical simula-
tions and an analytical study along the lines proposed by
Mullins and Sekerka [24]. The results show that screen-
ing leads to a rich variety of patterns. It introduces a new
length scale and a nontrivial dependence on the boundary
conditions which, as discussed below, is responsible for a
transition that resembles the Hecker transition. Patterns
may have a fractal character at shorter scales than the
screening length, and be Eden-like or grow dense at larger
scales. The above-mentioned transition (from dense to
multibranched growth) is shown to occur at a point that
depends on the potentials at the two boundaries, the dis-
tance between them, and the screening length.
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II. MODEL AND NUMERICAL METHODS

We concentrate on the DB model [3]. In that model
a breakdown pattern is allowed to grow in a dielectric
medium placed between two electrodes at different po-
tentials. The aggregate is assumed to be a perfect con-
ductor, and, thus, at constant potential, whereas fields
in the dielectric follow the Laplace equation. To account
for screening we replace the Laplace equation by

V2 =N’9, (1)

where A~1 is the screening length. The Debye-Hiickel
theory imples that A2 = 4me?p/kgT, where e is the
charge of the ions, p its (three-dimensional) density, kg
the Boltzmann constant, and 7" the temperature. In the
following, we will assume that A~! is a length intermedi-
ate between atomic scales and the macroscopic dimension
of the container. However, for many ECD experiments,
A~ 1 is only a few angstroms so that the theory in this
paper is not directly applicable.

Antiscreening would correspond to a minus sign on the
right-hand side of Eq. (1). Its effects will be briefly dis-
cussed at the end of Sec. III A. We shall consider a pla-
nar geometry (growth in a channel) and growth in two
dimensions.

To originate an aggregate Eq. (1) implemented on a
lattice was solved iteratively. The potential was fixed at
the outer (¢°) and the inner (¢%) electrodes; the latter
also gave the potential at the aggregate, assumed to be a
perfect metal at constant potential. In the following we
shall consider A and the potentials ¢° and ¢! as tunable
positive parameters. In an actual experiment, ¢° and ¢
will be determined by the external circuit, which fixes the
potential drop, and by the requirement of charge conser-
vation. As a consequence Eq. (1) is not gauge invariant
and it only has physical meaning for the gauge implied
by the choice of potentials just mentioned. We also note
that care should be taken that the linearization implicit
in the Debye-Hiickel theory can be applied.

Once the system has been relaxed, growth takes place
in the nearest neighbors of the aggregate with probability
proportional to the absolute value of the electric field at
these points; and the system is again relaxed.

Numerical simulations were carried out on samples
of the square lattice of sizes 100 x 200 for the case of
growth in a channel, and on samples of the square and
the triangular lattices with radii up to 100, for two-
dimensional (2D) growth. In the former case the bound-
aries along the longest direction were taken as the elec-
trodes, whereas periodic boundary conditions were used
in the shorter direction. On the other hand, simulations
in two-dimensions were carried out for a variety of shapes
of the outer electrode, in particular circular, triangular,
and square electrodes were considered. It has to be re-
marked that screening can strongly decrease the poten-
tial at the surface, changing quickly (see Fig. 1) as the
pattern evolves, thus the error used to stop the iteration
process should be decreased or increased properly. Our
criterion was that the maximum error at each node was
less than 1% the average value of the electric field at the
boundary of the pattern (the relative error is thus 0.01,
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FIG. 1. Growth in a channel: The left graph shows in de-
creasing intensity of shading the shape of the advancing front
as the aggregate grows. Each change in intensity corresponds
to 2433 particles more. In the right graph, the growth ve-
locity (average of the absolute value of the electric field at
the surface of the aggregate) is plotted. The parameters are
A1 =10, ¢° =1, and ¢* = 1074,

which is accurate enough if we consider the randomness
in the election of the new attached particle). This gave
around 50 iterations to relax the electrostatic field. This
criterion was also checked for several realizations by solv-
ing the discretized equations by conjugate gradients, giv-
ing the same quantitaive results as the method exposed
above.

III. ANALYSIS OF THE INSTABILITY

To get a qualitative idea of the effects of screening on
the growth process, we first analyze the stability of a
slightly deformed smooth surface by following the treat-
ment first discussed in Ref. [24]. We discuss both the
stability of a flat surface growing in a channel and that
of a circle growing in a circular cell.

A. Growth in a channel

Let us consider a flat boundary, say y = %, growing in
the y direction between two electrodes at potentials ¢°
and ¢!, respectively, and itself at a constant potential ¢¢.
We then deform the surface as y™ = y* + § cos(mz), 6
being very small. In the screened case the potential takes
the form (setting ¢ = ¢* at y = y™)

d(z,y) = do(y)
+Eo(y*)6 exp[—V/ A2 + m2(y — y")] cos(mz),
(2)

where
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_ ¢°sinh[A(y — y")] + ¢’ sinh[A(y° — y)]
¢0(y) - sinh[)\(yo _ yz)] ’ (3)

y° is the length of the cell in the growth direction (y),
and Ep(y°) is the electric field at the flat surface (y = y*),

¢* cosh[A(y° — y*)] — ¢°
e “

Then, assuming that the growth rate v is proportional
to the absolute value of the field at the surface of the
aggregate and writing v = y* + § cos(mz), we find for
the ratio between the instantaneous rates of growth of
the perturbation (§) and that of the flat surface (y*) the
following expression [25]:

Eo(y') =

m

— 6/ 6 _ 2 2 ’\2¢l ) 1
oy (\//\ +m Eoly") Y. (5)
In the case of no screening Eq. (5) reduces to the known
result o, = my’. When screening is present the instan-
taneous growth rate depends on the potentials at the elec-
trodes, the gap between them (y° —y*), and the screening
length (A™1). Two cases should be distinguished. For
¢° < ¢, the field at the surface of the aggregate has the
same polarization of the electrodes for all values of y* [for
which Eg(y?) > 0]. Thus, the second term on the right
hand side of Eq. (5) is always negative, decreasing in
absolute value as the pattern evolves. Consequently, the
effect of screening will be to create dense structures which
become more dilute while growing, but still resemble the
Eden model.

More interesting changes are found in the case of
@¢° > ¢'. In this case the most interesting feature is the
possibility that Eq(y®) vanishes. We should note that this
corresponds to a breakdown of overall charge neutrality:
the screening charge at both electrodes is of the same
sign. In many cases this effect is excluded on physical
grounds. This vanishing of the electric field occurs at a
critical length of the aggregate y%, given by

o

coshiAw° — )] = 2. (6)
For y° > ' and provided that ¢°/¢° < cosh[\y°],
Ey(y*) is opposite to the polarization of the electrodes
(Eo(y®) > 0). It goes to zero at a given value of the
length of the aggregate (y%) and, beyond this point, it
is always negative. As a consequence, the second term
in aun is initially negative, as in the previous case, but
now it increases in absolute value. As the length of the
aggregate increases, and the zero of the denominator is
approached, the screening term slows down the perturba-
tions of every wavelength, and the growth rate is reduced.
The a,, will vanish and become negative at different val-
ues of y* (Fig. 2). A wavelength-selection mechanism will
thus take place in such a way that the minimum m that a
perturbation should have in order to be amplified will in-
crease with y®. As a result the number of branches across
the width will increase and the surface of the aggregate
will become gradually fatter. Then, at a distance which
depends on the parameters of the problem, (¢°, ¢*, and
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FIG. 2. The instability of the front (o) as it evolves.
The parameters are those of Fig. 1. Different values of m

are shown: 1 (continuous line), 2 (dotted line), and 3 (dashed
line).

the screening length A1) Ey(y*) vanishes and all o, will
change from —oo to +o00. A flat front will result. Beyond
this point (y!) all wavelengths become unstable. Once a
sharp tip develops, it will be amplified.

This behavior is a consequence of the potential and
its associated charge distribution. Before the transition,
there is a small screening layer near the growing elec-
trode. In the intermediate region the potential decreases
to a value close to zero, to rise again near the external
electrodes. Beyond the transition these two layers merge
and the potential increases monotonically between the
aggregate and the outer electrode. It is worth noticing
that these results are not necessarily linked to the model
discussed in Sec. II, and may have a more general char-
acter as demostrated in the Appendix for the case of a
dielectric having a constant density of free charges.

We turn now to comment briefly on the effects of anti-
screening. As remarked above this would correspond to
the presence of an ambient (density of sources) of parti-
cles in DLA, and might be relevant in ECD as far as ions
could be generated anywhere between the electrodes. In
this case all magnitudes are oscillating functions. In par-

ticular, the field at the surface of the aggregate is given
by

¢ cos]\My® —y)] - ¢°
SInDA (Y — )]

Eo(y") = (7)

Now the field only vanishes when ¢ > ¢° and this may
occur for several sizes of the aggregate. A procedure sim-
ilar to that described above gives the following expression
for the ratio between the instantaneous growth rates:
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Om = (e(m2_>‘2)v m2_>‘2+ﬁl) yia (8)

Eo(y*)

where O is the step function. The oscillatory character of
am, originates a behavior which is even richer than that
found in the screening case. For instance, transition(s)
similar to that described above may also take place, al-
though in this case they can only occur for ¢* > ¢°.

¢'[K1(2)1o(2°) + I1(2) Ko(2°)] — ¢°[Ko(2*) 11 (2) + To(2*) K1 (2)]
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B. Growth in two dimensions

We now consider a perfectly metallic aggregate of cir-
cular shape, i.e., a disc of radius r* at constant potential
¢%, growing in a dielectric medium, and an outer elec-
trode also circular (r = 7° > r?) at potential ¢°. Here we
shall only discuss the case of screening and ¢° > ¢*. The
field at a point z = Ar in the dielectric takes the form

Eo(Z) =

where 2%° = A\r®° and I,, and K, are the modified Bessel
functions. As in the one-dimensional (1D) case, the field
is first (small 2) opposite to the polarization of the outer
electrodes and goes through zero at a point in between
the aggregate surface and the outer electrode. Beyond
this point the field has, for all 2, the same polarization
of the electrodes. Again, the field at the surface of the
aggregate Fo(2") vanishes at a point 2 given by

(K (2)1o(2") + L () Ko(=")] _ ¢° 10)
[(Ko(2)11(2f) + Lo(28) K1(2)] — 4%

As found in the one-dimensional case this behavior
of the field determines the stability of the circularly
shaped aggregate. To carry out the stability analy-
sis we deform the circular surface of the aggregate as
zn = z' + A6 cos(nf), where § is small. The result for the
ratio between the instantaneous rates of growth of the
perturbation (6) and that of the disc (z?) is

_ b8 _ i (Enoa(2)  Ag
S EE T ( R ‘E(zi))' ()

The behavior of a,, is similar to that obtained in the
previous case. Again the a, vanish at different values of
2%, favoring dense growth. At the point where E(z) van-
ish, ay, for all n goes to infinity, and the transition from
dense to ramified growth takes place. The discussion that
follows Eq. (5) is also valid here.

IV. NUMERICAL SIMULATIONS

The results of the numerical simulations carried out in
this work, illustrated in Figs. 1 and 3-7, fully coincide
with the predictions of the analysis of the instability dis-
cussed in the preceeding section. We first comment on
the results for the one-dimensional case. Figure 1 shows
the aggregate at different stages during the growth pro-
cess. As predicted, growth sharply changes from dense to
ramified. We have calculated, from Eq. (6), the length
at which the transition should occur for the parameters
of the figure, resulting ! ~ 101, in excellent agreement
with the numerical results. It should be pointed out that
this is a remarkable demonstration of the validity of the
analysis first suggested by Mullins and Sekerka [24]. The
occurrence of the transition in a wide range of the param-
eters is further illustrated in Fig. 3, again it takes place
at the points predicted by the analytical study. In Fig. 1

Io(2°)Ko(2*) — Io(2*) Ko(2°)

A, 9)

we have also plotted the average growth speed, that is the
average of the absolute value of the field at the aggregate
surface. We note that, as discussed above, the velocity
nearly vanishes at the transition. Finally we refer to the
width of the branches that grow beyond the transition
point. As shown in Fig. 3 its width increases as \ de-
creases, being DL A-like at scales shorter than the screen-
ing length A~!. It is remarkable that screening produces
dilute patterns without using a growth rate proportional
to a power 7 of the electric field different from unity.

‘We have also considered under which conditions sev-
eral branches may develop. Screening reduces the range
of the interaction, and, therefore, should pose no prob-
lems to the growth of parallel branches. In the simula-
tions outlined above, however, particles are added one at
a time. This effect induces a sharp threshold in the veloc-
ity of growth, so that points where the field exceed this
threshold will grow and not others. Since the fields in
this screened situation have an exponential dependence
on the separation between electrodes, this artificial cut-
off prevents most of the front from growing. To overcome
this difficulty we have considered a front of particles that
may attach stochastically at different sites without re-
arranging the potential in the dielectric. The results
are illustrated in Fig. 4. As expected, several parallel
branches grow simultaneously.

¢'=0.34 A7'=100
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3278 part.
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FIG. 3. Growth in a channel: Different patterns grown

with ° = 1 and several values of A™! and ¢°.
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FIG. 4. Same as Fig. 3 but simultaneously attaching 50
particles at each step.

Figures 5-7 show some patterns obtained in the two-
dimensional case. The transition is also well defined, due
to the choice of parameters. The most outstanding fea-
ture of the aggregates shown in Fig. 5 is that their shape
before the transition mimics the shape of the outer elec-
trode. This is a consequence of screening. In the case

(a)

FIG. 5.

Growth in two dimensions for A™! = 10 and ¢° =
1. Patterns grown with a square electrode in a square lattice
(¢* = 0.002) and a triangular electrode in a triangular lattice
(¢* = 0.062) are shown. In both cases ri = 25.
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FIG. 6. Growth in a square lattice with a circular elec-
trode. A™! =10, ¢° = 1, and ¢* = 0.9 (rf = 50).

of no screening aggregates grow isotropically and reflect
the shape of the outer electrode only when they get very
close to it. This effect could be easily understood by
looking at the equipotential lines between two electrodes
at different potentials, the inner a single point at the
center and the outer of an arbitrary shape. In the un-
screened case the equipotential lines are almost circular
up to very near the outer electrode. In the presence of
screening and due to the much shorter range of the in-

FIG.7. Growth in a triangular lattice: Circular electrode,
A1 =10, ¢° = 1, and ¢* = 0.006. 75% of the pixels contained
in the perimeter of the circumference corresponding to the
average radius of the aggregate were attached at each step.
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teraction, the equipotential lines reflect the shape of the
outer electrode even far from it, as only the zones that
are at the shortest distances contribute appreciably to
the local potential. Although this explanation is rather
obvious, we have checked that the results of Fig. 6 are
not-lattice effects by considering the case of a triangular
electrode in the square lattice and vice versa. The re-
sults demonstrate that the shape of the aggregate only
depends on the shape of the electrode and not on the
choice of a particular lattice. Finally we note that the
effect of allowing a front of particles to stick simultane-
ously to the aggregate surface is similar to that found for
growth in a channel (Fig. 7). In this case we have kept
constant the flux of particles (instead of the number as
done in the 1D case).

V. DISCUSSION AND CONCLUDING REMARKS

At first glance the transition mentioned above shares
many common features with the so-called Hecker transi-
tion [20] observed in ECD. In both cases dense and fil-
amentary patterns develop at different times. The com-
plexity of the real experiments greatly exceeds the simple
model described here, and, presumably, other effects like
those derived from the propagation of fronts of charged
impurities towards the cathode, as discussed in Refs. [13]
and [16], shall also be taken into account in a complete
theory. However, some aspects of the Hecker transition
are similar to those of the present model. The transition
described before is characterized by a change in the sign
of the electrostatic field at the surface of the aggregate.
If that takes place in the Hecker transition, a change
in the charge of the chemical species being accumulated
near the cathode should also take place. This conclu-
sion seems reminiscent of experimental findings, where a
change in color associated with a change in the material
being deposited (metal oxides are replaced by metallic
ions in going through the transition) has been reported.
A similar change in color of the solution has been identi-
fied as a change in the pH, which occurs simultaneously
with the transition. Moreover, assuming the screening
length to be much smaller than the size of the cell, the
occurrence of the transition in the center of the cell, as
observed experimentally, requires that ¢° > ¢ (Fig. 1).
This implies that, before the transition, the field near the
aggregate will be opposite to the polarization of the elec-
trodes (as outlined above), although very low. Hence this
electrostatic barrier can easily be overcome by cations
through a diffusive process. However, we recall that, as
we pointed out above, our model is not directly applica-
ble to this experiment.

In conclusion, we have presented an investigation of
the effects of screening on growth phenomena in screened
electrostatic fields. Screening strongly increases the di-
versity of patterns, giving rise, under certain conditions
and in a very simple way, to a transition from dense to
multibranched growth. On the other hand, the shape of
the aggregate before this transition closely reflects that
of the outer electrode. Some of these features are simi-
lar to those of the so-called Hecker transition observed in
ECD.
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APPENDIX

Here we consider the case of a dielectric medium that,
instead of being described by Eq. (1), has a constant
density of free charges. The Poisson equation can now
be written as

V2¢ = po. (A1)

As in Sec. III A we consider a flat boundary, growing in
the y direction between two electrodes (outer and inner)
at potentials ¢° and ¢*, respectively, and itself at a con-

stant potential ¢*. The potential at the deformed surface
y™ = y* + 6§ cos(mz), now takes the form

¢(xz,y) = ¢o(y) + Eo(y*)6 exp[—m(y — y*)] cos(mz),

(A2)
where
do(y) = Lpolyy’ — (v° + v )y + v*] + &'
o __ ¢z .
(y — o A3
+ P (y—19" (A3)

and Ey(y*) is the electric field at the flat surface (y = y*),

Eo(y") = 3p0(y° — ¥*) — .jj° — Z; :

(A4)

Finally, the result for the ratio between the instanta-
neous rates of growth of the perturbation (6) and that of
the flat surface (y*) is

o= (m B Eop((;i)) v

The behavior of a,, is very similar to that obtained
for the model of Sec. II. It reproduces all the results
discussed in previous sections, including the transition
from dense to ramified growth. Thus it can be concluded
that the present results are not necessarily restricted to
systems described by Eq. (1).

It is interesting to note that this model is similar to
the one recently proposed by La Roche et al. [23] to
explain the patterns that grow in a variable Hele-Shaw
cell. Sources of particles such as those considered in [23]
would correspond to pp < 0.

(A5)
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